Power dissipation and temperature distribution in piezoelectric slabs
نویسندگان
چکیده
A method is presented to determine power dissipation in piezoelectric slabs with internal losses and the resulting temperature distribution. The length of the slab is much greater than the lateral dimensions. Losses are represented using complex piezoelectric coefficients. It is shown that the spatially non-uniform power dissipation density in the slab can be determined by considering either hysteresis loops or Poynting’s theorem. The total power dissipated in the slab is obtained by integrating the power dissipation density over the slab and is shown to be equal to the power input to the slab for special cases of mechanically and electrically excited slabs. The onedimensional heat equation that includes the effect of conduction and convection, and the boundary conditions are then used to determine the temperature distribution. When the analytical expression for the power dissipation density is simple, direct integration is used. It is shown that a modified Fourier series approach yields the same results. For other cases, the temperature distribution is determined using only the latter approach. Numerical results are presented to illustrate the effects of internal losses, heat conduction and convection coefficients, and boundary conditions on the temperature distribution.
منابع مشابه
The Effect of Temperature Dependency on the Thermo-Electro-Elastic Analysis of Functionally Graded Piezoelectric Spherical Shell
Results of electro-thermo-elastic analysis of a functionally graded thick-walled spherical shell made of temperature dependent materials are presented in this article. All material properties are assumed temperature-dependent and also are graded along the thickness direction based on power function. Temperature dependency is accounted for all material properties including, thermal, mechanical a...
متن کاملFinite Element Analysis of Functionally Graded Piezoelectric Beams
In this paper, the static bending, free vibration, and dynamic response of functionally graded piezoelectric beams have been carried out by finite element methodunder different sets of mechanical, thermal, and electrical loadings. The beam with functionally graded piezoelectric material (FGPM) is assumed to be graded across the thickness with a simple power law distributio...
متن کاملEvaluation of the Effects of Injection Velocity and Different Gel Concentrations on Nanoparticles in Hyperthermia Therapy
Background and objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.Methods: In this study, to solve he...
متن کاملModeling and Analysis of Viscous Dissipation Phenomenon on Temperature Distribution in the Process of Injection Explosive Fluid
The explosive viscous liquid becomes inject to warhead by discharge system. The injection device is consisted of a piston to move down and leads the viscous fluid through the cylindrical pipe towards the end of the duct. Then the viscous fluid leads into a convergent path that will be injected to the warhead or other injection equipment. In this project, the path of viscous fluid flow is divide...
متن کاملAsymmetric Thermal Stresses of Hollow FGM Cylinders with Piezoelectric Internal and External Layers
In this paper ,the general solution of steady-state one dimensional asymmetric thermal stresses and electrical and mechanical displacements of a hollow cylinder made of functionally graded material and piezoelectric layers is developed .The material properties ,except the Poisson's ration, are assumed to depend on the variable radius and they are expressed as power functions of radius. The temp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010